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We enhance refinement types with mechanisms to reason about relational properties of probabilistic com-
putations. Our mechanisms, which are inspired from probabilistic couplings, are applicable to a rich set of
probabilistic properties, including expected sensitivity, which ensures that the distance between outputs of
two probabilistic computations can be controlled from the distance between their inputs. We implement our
mechanisms in the type system of Liquid Haskell and we use them to formally verify Haskell implementations
of two classic machine learning algorithms: Temporal Difference (TD) reinforcement learning and stochastic
gradient descent (SGD). We formalize a fragment of our system for discrete distributions and we prove
soundness with respect to a set-theoretical semantics.
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1 INTRODUCTION

Refinement types provide an appealing mechanism for proving program properties in executable
programming languages (including Haskell [Vazou et al. 2014b], Scala [Hamza et al. 2019], and
F* [Swamy et al. 2016]). They have been used to good effect for reasoning about functional
correctness and termination [Vazou et al. 2014a], resource analysis [Handley et al. 2019], security
policies [Lehmann et al. 2021], and other properties of large developments.

However, refinement types do not provide support for reasoning about relational and hyper
properties. The main difference between trace properties, which are the usual target of refinement
types, and relational and hyper properties is that the latter reason about pairs or sets of traces. This
generalization allows to account for a wide variety of security, privacy, and robustness properties.

One natural approach to support relational reasoning is to use relational type systems, as proposed
for instance in [Barthe et al. 2014; Maillard et al. 2020]. These type systems are similar to classic
refinement type systems, but reason about relational assertions. The latter are interpreted over pairs
of (typed) values, and therefore capture relational properties in a natural way. Relational refinement
type systems retain the feel of refinement types and are particularly effective when reasoning about
two executions of the same program or two programs that follow the same control-flow.

Unfortunately, relational refinement types offer limited support to reason about programs with
diverging control-flow. This is due to the fact that relational refinement types are syntax-directed,
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whereas many examples of relational program verification benefit from or even require non-
syntax-directed reasoning. This is in particular the case for reasoning about program optimizations
that restructure the control flow of the program, and about probabilistic programs, since their
correctness or security proofs often use mathematical arguments that are not reflected in their
syntax. Moreover, it remains a challenge to make relational refinement types practical, even in
settings where syntax-directed reasoning suffices. This difficulty is perhaps best witnessed by prior
work on relational cost [Cicek et al. 2019]. In this work, Cicek et al. [2019] develop BiRelCost, a
state-of-the-art bi-directional type checker that compares the cost of two programs or two program
executions. In this setting, relational syntax-directed reasoning alternates with non-relational
syntax-directed reasoning, in a way that the latter takes over whenever the two program executions
no longer have the same control-flow. Unfortunately, controlling such alternations automatically by
typing ultimately relies on intricate and partial heuristics. As a consequence, BiRelCost sacrifices
predictability and generality, which are some key advantages of refinement types.

A principled approach to overcome the limitations of relational refinement types is to impose a
separation between types and relational assertions. This approach, realized by Relational Higher-
Order Logic (RHOL) [Aguirre et al. 2017], ensures maximal flexibility and expressiveness. However,
the approach is not implemented, thus it remains an open question if RHOL can be made practical.

In this paper, we explore a middle ground approach that retains the key benefits of refinement
types. The crux of our approach is a carefully crafted interface for supporting relational reasoning
within a unary refinement type system. Our approach is implemented atop Liquid Haskell [Vazou
et al. 2014b] and inherits many of its essential features: first, our formal guarantees hold for Haskell
programs and these programs can be executed using the existing runtime system and optimized
libraries of Haskell. Second, verification is carried using a mature refinement type checker and
should be familiar for users of Liquid Haskell. Third, the known techniques of Vazou et al. [2018] for
encoding proofs manually remain applicable. Naturally, these benefits come at a cost: concretely, our
proofs are less automated than proofs in classic Liquid Haskell. However, proofs remain reasonably
short, even for relatively complex examples, demonstrating that our middle ground approach
achieves predictable and practical verification, a combination that has not been achieved by any
prior relational verification tool.

We realize our approach not only for classic higher-order programs, but also for probabilistic
programs, an important class of programs that is used pervasively in cryptography, privacy, machine
learning, and many other areas. In addition to their numerous applications, probabilistic algorithms
are an interesting class of programs to consider in their own right, because they often have
intricate specifications and complex proofs. In particular, many properties of interest of probabilistic
programs are quantitative, i.e. they reason about probabilities or expectations — or in a relational
setting, about differences between probabilities or expectations. Although such forms of quantitative
reasoning are seemingly out of reach of SMT-based verification, prior work has shown that relational
verification of probabilistic programs can be achieved using probabilistic couplings [Barthe and
Hsu 2020; Lindvall 2002; Thorisson 2000; Villani 2009]. We formalize the main tools from coupling-
based reasoning in our framework and illustrate how these tools can be used to verify two classic
examples of probabilistic programs from machine learning. The first example is Temporal Difference
(TD) reinforcement learning, for which we show rapid convergence to a stationary distribution
independently of its initial input. The second example is Stochastic Gradient Descent (SGD),
for which we show algorithmic stability— a classic machine learning property ensuring that a
supervised machine learning algorithm generalizes well and does not overfit with respect to its
training set. Both properties are captured in our system as instances of expected sensitivity, i.e.
they upper bound the expected distance between two outputs of the program as a function of
the distance between the corresponding inputs. However, both examples use distinct proof tools:
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the first example is verified using classic techniques from probabilistic couplings. In contrast, the
second example uses a more elaborate, quantitative form of probabilistic couplings which embeds
reasoning about the Kantorovich distance [Deng 2015; Villani 2009] between two distributions.
Thus, the two examples showcase the different components of our system.

Summary of contributions. Our contributions are the following:

e We define a probabilistic relational refinement type system and encode it into the unary types
of Liquid Haskell (§ 3). We choose Liquid Haskell as a mature refinement type checker, but
our methodology can be used with other unary refinement type systems.

e We use our system to prove two case studies from the literature: TD (§ 4.1) and SGD (§ 4.2).

e We prove soundness of our type system with respect to a denotational semantics (§ 5).

We start with an overview of our approach (§ 2) and conclude with related work (§ 6).

2 OVERVIEW

We start with an overview of our system that uses (unary) refinement types to machine check
relational properties of probabilistic, executable programs. First (§ 2.1) we introduce the PrM proba-
bilistic monad and our bins running example. Next, we encode (§ 2.2) and formally prove (§ 2.3)
a relational specification for the returned values of bins by axiomatizing probabilistic relational
logic as refinement type assumptions. Finally, we follow a similar methodology to encode (§ 2.4)
and prove (§ 2.5) a relational property about bins distance.

2.1 The Probability Distribution

The common way to implement probability distributions in Haskell is to use a probability monad,
see for instance [Ramsey and Pfeffer 2002]. Therefore, our framework is set up as a verification
wrapper around any Haskell library that supports a monadic implementation of probabilities. In
order to execute our implementations, we wrapped the probability library'; however, our proofs
are independent on the choice of the library and only require the existence of some type PrM
that implements the standard interface for a probabilistic monad. This includes pure, bind, and
constructors for Bernoulli, choice, and uniform distributions.

type PrM a = ... -- defined in Sec 3 using an existing probabilistic Haskell library
{-@ type Prob = {p:Double | @ < p < 1} @-3}
{-@ pure ::a — PrM a e-3}
{-@ (>>=) :: PrMa —» (@ > PrMb) —» PrM b @-3

{-@ bernoulli :: Prob — PrM {v:Integer | v==0 || v == 1} @-}
{-@ choice :: Prob - PrMa —» PrM a — PrM a @-3
{-@ unif :: {xs:[a] | @ < length xs} — PrM a @-3

We define the Haskell probability monad PrM using an interface of an existing library (§ 3). We
use the notation {-@ ... @-} to define refinement types and refinement type specifications. That
is, the Prob type is a Haskell Double, refined to be between @ and 1. The specifications for the
monadic pure and >>= are standard. The bernoulli function takes an input a probability p, i.e.
a Double between @ and 1, and returns 1 with probability p, otherwise . The function choice

p d1 d2 returns the distribution d1 with probability p, otherwise d2. Finally, unif takes as input
a non-empty list and returns one of its elements uniformly at random. All these functions are

1We used the probabilistic functional programming library https://hackage.haskell.org/package/probability-0.2.7
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executed using the underlying Haskell implementation, but are left as uninterpreted (later § 3.4
and § 3.5 axiomatized) in our logic.

Probabilistic Programming: The Bins Example. Using the above interface, we can define (and
execute) probabilistic programs. For example below we define the bins program that models a
simple balls and bins process. In this process, n balls are thrown into a bin; in each throw, there is a
probability that the ball lands outside the bin. The throws are independent and the probability to
send any ball in the bin is p. The result of the process is the number of balls that lands into the bin.
We model the process using the bernoulli distribution.

{-@ type Nat = {n:Integer | @ < n } @-}

{-@ bins :: n:Nat — Prob — PrM {r:Nat | r < n} @-}
bins @ _ = pure @
bins n p = do x « bins (n - 1) p

y « bernoulli p

pure (x +y)

We can use standard refinement types to verify various unary properties of the bins function. In
particular, Liquid Haskell will use SMT automation to easily verify that bins terminates (because
the recursive call occurs on smaller n). One can also prove that the result is always a natural number
(as specified by the refined signature) and that it is not greater than n.

Using the theorem proving capabilities of Liquid Haskell [Vazou et al. 2017], we can construct
extrinsic proofs that validate probabilistic, unary properties of bins. For example, we can define
expect f e to be the expected value of e, for some function f that turns the values of e to doubles:

{-@ expect :: (a — Double) — PrM a — Double @-}
{-@ natToD :: n:Nat — {d:Double | d == to_real n} @-}

We can extrinsically prove that expect natToD (bins n p) = n * p, assuming that the expecta-
tion is linear and expect naToD (bernoulli p) = p. Note that the Haskell Double is represented,
by Liquid Haskell, as real in SMT, so the function natToD converts natural to double numbers
while its specification ensures that the value is not changed. Next, we see how to construct extrinsic
proofs that establish relational properties.

2.2 Relational Specifications & Lifting

A first relational property of interest is stochastic dominance, a classic property that defines when
a real-valued probabilistic process is better than another. Informally, a real-valued probabilistic
process is better than another if it always outputs a “higher value” w.r.t. the usual order on real
numbers. Interestingly, the intuitive notion of “higher value ” is formally defined over two random
variables, which makes the definition of stochastic dominance non-trivial. Fortunately, stochastic
dominance can be characterized using probabilistic couplings, a classic tool to reason about Markov
chains. Informally, couplings are probabilistic equivalent of cartesian products and can be used
to lift relational properties to distributions. The lifting of a relational property, formally defined
in [Barthe and Hsu 2020], states that two distributions satisfy the lifting of a property p if there
exists a coupling of the two distributions such that p holds surely, i.e. with probability 1, in this
coupling. For our purposes, it suffices to assume an operator o that transforms a relation over two
types into a relation over probabilistic distributions over these two types:

(®) :: (@a—> b —> Bool) » PrM a —» PrM b — Bool
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The operator (¢) supports compositional reasoning via two axioms: pureAxiom states that Dirac
distributions of elements related by p are related by the lifted relation o p and bindAxiom states
that lifted relations are preserved by monadic composition. These axioms, which are expressed
below using refinement type signatures, conveniently eschew probabilistic reasoning and open the
possibility of carrying SMT-based verification:

{-@ assume pureAxiom :: p:(a — b — Bool) — x;:a — X,:b = {p x; %/}
{o p (pure x;) (pure x,)} @3}

l

{-@ assume bindAxiom :: p:(b —» b — Bool) — qg:(a — a — Bool)
— ¢e;:PrlMa — f;:(a = PrMb) — e.:PrMa — f,:(a — PrM b)
— {¢qe e}
- (x;:a = xr:{a | ax; x} = {op (ff xp) (fr X))
— {0 p (e >>= ) (e >>= f,)} -}

Both pureAxiom and bindAxiom are defined as Haskell functions that return (), but their refinement
type signatures encode the desired axioms. The assume keyword prevents refinement type checking,
since the function definitions do not actually inhabit their type specifications. pureAxiom states
that forall p, x; x»,if p x; x,,then o p (pure x;) (pure x,).Thetype {p x; x,}is an abbreviation
of {v:() | p x; x}.In general, we can write {q} instead of {v:a | q}, when v does not appear in
g. Similarly, the bindAxiom ensures ¢ p (e; >>= f;) (e, >>= f,) when it is provided a proof that
o q e; er and a (higher-order) proof that forall x; and x, such that q x; x,, o p (f; x;) (fr %)
holds. In § 3 we discuss the implementation of our library that includes these two assumptions, while
later (§ 5) we develop a formalisation that justifies these assumptions, concretely, the pureAxiom
and bindAxiom are respectively encoded in the rules T-RET and T-BIND of fig. 8.

In our bins example, we want to show that for two throwers sending the same number of balls into
bins, the more gifted thrower, i.e. the thrower with a higher probability to send balls into the bins,
will have a higher count. Formally, our goal is to show thatifp < g,then< (<) (bins n p) (bins
n q), from which one can conclude that expect naToD (bins n p) < expect naToD (bins n q)
by a simple property of couplings. In our syntax, we formalize our goal as:

{-@ binsSpec :: p:Prob — {q:Prob|p<q} — n:Nat — {o (L) (bins n p) (bins n q)} e-}

In the next subsection, we use relational refinement types to establish this goal.

2.3 Relational Proofs

Following Handley et al. [2019], relational proofs are (Haskell) inhabitants of the refinement
types that express the relational specifications. Such proofs rely on assumptions about relational
properties of the probabilistic primitives. For example, bins is using bernoulli, thus the proof of
binsSpec relies on the assumption below, which captures bernoulli’s relational specification.

{-@ assume bernoulliAxiom :: p:Prob — {q:Prob | p < q}
— {0 (£) (bernoulli p) (bernoulli q)} @-}

The specification (formalized in the rule T-BErN of § 5; fig. 8) states that bernoulli q stochastically
dominates bernoulli pifp < g.In our current implementation, this specification is taken as an
axiom, although it would possible to establish this specification from first principles, by making
the definition of lifting explicit for finitely supported distributions.

Using the bernoulliAxiom we prove binsSpec following the structure of bins definition:

binsSpec p q @
= pureAxiom () @ @ ()
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binsSpec p g n
= bindAxiom (Z£) (<) (bernoulli p) (bins1 n p) (bernoulli qg) (bins1 n q)
(bernoulliAxiom p q) (\x; x, —
bindAxiom (<) (Z) (bins (n-1) p) (bins2 x;) (bins (n-1) q) (bins2 x,)
(binsspec p g (n-1)) (\y; yr —
pureAxiom (<) (y; + xp) (yr + Xr) O

where
bins1 n p x = bind (bins (n-1) p) (bins2 x)
bins2 x y = pure (y + x)

The proof, as bins, is inductively defined on n. In the base case, we call pureAxiom (<) @ @ ()
to get o (<) (pure @) (pure @), which concludes the proof, since bins @ p == pure 0. Such
rewrite steps are automated by Liquid Haskell’s logical evaluation strategy (namely PLE [Vazou
et al. 2017]). Further, our proofs are automated by SMT arithmetic. For example, pureAxiom’s last
argument needs to prove that @ < o, which is trivially shown by () and SMT automation. The
inductive case starts with a call to bindAxiom, again following bins inductive definition. There are
two interesting points here. First, the bins definition binds bernoulli p to a continuation. Since
bindAxiom’s 4th and 6th arguments require to explicitly pass these continuations, we use a where
clause to name the continuation bins1. Second, bindAxiom requires two proof terms. The first one
should show that o (<) (bernoulli p) (bernoulli q), which is shown by the bernoulliAxiom.
The second one, should show o (<) (bins1 n p x;) (binsl n q x,), for all x; and x, that satisfy
x; < xr. We construct such a proof term using a lambda?. Since the bins definition is using another
bind, the proof again calls bindAxiom with similar arguments. In the last step, bins calls pure, thus
the proof calls pureAxiom, whose proof argument is again (), i.e. automated by rewriting and SMT.

2.4 Quantitative Specifications and Kantorovich lifting

So far, we have established that if p < q then bins n q stochastically dominates bins n p and
thus expect naToD (bins n p) < expect naToD (bins n q). However, our specification does
not provide quantitative information on expect naToD (bins n q) - expect naToD (bins n p).
In fact, one can use simple properties of expectation to show that if p < q then we have expect
natToD (bins n q) - expect natToD (bins n p) < n * (g-p), where natToD is just the cast
defined in § 2.1. Unfortunately, one cannot prove this fact using the previous, lifting-based approach.
Instead, we need to use a richer notion of lifting that allows to reason about quantitative properties
and in particular about the expected distance between two distributions. In order to accommodate
such reasoning, one considers a richer setting where each type is equipped with a distance dist.
These distances are defined inductively on the structure of types; for distribution types, they use
the so-called Kantorovich metric [Deng 2015; Villani 2009], which lifts a distance over some types
to a distance over its corresponding distribution type:

{-@ dist :: Dist a —» (a — a — {d:Double | @ < d}) @-}

{-@ kant :: Dist a — Dist (PrM a) @-3}

{-@ kdist :: Dist a » PrM a — PrM a — {d:Double | @ < d} @-}
kdist d = dist (kant d)

The kant function turns a distance into Kantorovich and kdist simply composes kant with dist.
The formal definition of the Kantorovich metric can be found in Deng [2015]; for this work, it suffices

2The actual proof is using a named function with explicit type specification, since Liquid Haskell does not infer preconditions,
but for space, here we use lambdas.
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that the Kantorovich metric is based on couplings and lends itself to compositional reasoning. For
instance, the following axioms (corresponding to the rules T-RET and T-BIND § 5; fig. 8) are valid:

{-@ assume pureDist :: d:Dist a
Xj:a — Xp:a
— { kdist d (pure x;) (pure x,) == dist d x; x, } @-}

l

{-@ assume bindDist :: d:Dist b
m:Double — p:(a — a — Bool)

fr:(@a > PrMb) - e:{PrMa | op e e }
(xjra—={xr:a | p x; x,3 = { kdist d (f; x;) (fr x/) < m})
— { kdist d (e; >>= f}) (e >>= ;) < m } @}

—
— fj:(@ > PrM b) — e;:PrM a
N
N

The first axiom states that the Kantorovich distance of two Dirac distributions is the distance of
their generating element. The second axiom upper bounds the Kantorovich distance between two
monadic compositions by the maximal Kantorovich distance between f; x; and f, x, for all x; and
xr related by an intermediate assertion p, such that e; and e, are related by the lifting of p. We
emphasize that the bind rule for Kantorovich distance is more intricate than the corresponding
rules for lifting and that the “obvious” compositional rule that adds distance between the es and
the fs would not be sound, as discussed in § 5.
Then, the distance spec of bins is:

{-@ binsDist :: p:Prob — {q:Prob| p < g} — n:Nat
— { kdist distNat (bins n p) (bins nqg) <n=x*x (q-p) } @}

{-@ distNat :: Dist Nat @-}

That is, for each probabilities p and q, so that p < g, and each natural number n, the Kantorovich
distance between bins n p and bins n qisbounded by n * (q - p). Since bins returns natural
numbers, the distance is given by distNat that defines the distance metric on natural numbers
(§ 3.2). Finally, Haskell’s Doubles are represented in the SMT logic are SMT reals, i.e. there is no
reasoning about overflows and precision loss. The binsDist specification is well sorted in Z3, since
Z3 automatically converts between int and reals.

2.5 Distance Proofs

Unlike the proof of § 2.3, the proof of binsDist is not syntax directed. On the contrary, it requires
the construction of a “ghost” probabilistic function that splits the distance between bins n p and
bins n g. We call this function ghost bins (gbins) and define it as follows:

gbins :: Nat — Prob — Prob — PrM Nat
gbins n p g = do x <« bins (n-1) p

y « bernoulli g

pure (x +y)

The ghost gbins n p q adds bins with probability argument p and bernoulli with probability
argument q, thus connecting bins n p and bins n q.
Using mostly syntax-directed proofs, we establish the following two lemmata:
{-@ binsDistL :: p:Prob — {q:Prob| p < g} — n:Nat
— { kdist distNat (bins n p) (gbins np q) < gq - p} @}
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{-@ binsDistR :: p:Prob — {qg:Prob| p < g} — n:Nat
— { kdist distNat (gbins n p q) (bins nq) < (n-1) * (q - p)} @-}

Both proofs use the distance axioms of § 2.4. The proof of binsDistR (inductively) calls binsDist,
while the proof of binsDistL requires the below axiom for Bernoulli’s distance.

{-@ assume bernoulliDist :: d:Dist Nat
— p:Prob — q:Prob
— { kdist d (bernoulli p) (bernoulli q) < abs (p - q) } @-}

That is, the expected distance of two Bernoulli distributions, is bounded by the distance of the
bernoulli’s arguments (as formalized in the rule T-BERN of § 5; fig. 8).

We prove binsDist combining binsDistL and binsDistR with triangular inequality, which, as
explained in § 3.2 is a property (concretely a field) of the Dist type. The proof goes by induction:

binsDist p q @
= pureDist distNat @ @
binsDist p g n
= dist d (bins n p) (bins n q) -- Step 1
? trinequality d (bins n p) (gbins n p q) (bins n p) -- Defined in Sec 3.2
=<= dist d (bins n p) (gbins n p q) + dist d (gbins n p q) (bins n q) -- Step 2
? binsDistL n p q
? binsDistR n p q

==(q-p)+ (n-1) * (q - p) -- Step 3
=<=n % (q - p) - Step 4
*k% QED

where d = kant distNat

The base case is merely an application of the pureDist axiom. In the inductive case, we use the
(in)equational reasoning proof combinators of [Handley et al. 2019]: 1 ? j =<= r ensures 1 is not
greater than r using the justification ? j which is optional and **x QED concludes the proof. First,
we start from the distance between bins n p and bins n g. Applying triangular inequality, in the
second step, we split the distance using gbins. Next, we use the two helper lemmata to bound
each of the two distances. Finally, using trivial (SMT-automated) arithmetic, we get the desired
bound. We note that the lemma binsDistR inductively calls binsDist on a smaller n, so our proof
is inductive, while Liquid Haskell is ensuring (mutually recursive) termination.

The binsDist example showcases that our framework can be used to machine-check sophisticated
proofs that require “ghost” proof objects. To evaluate the expressiveness of our framework, we
used it to prove two classic properties of machine learning, probabilistic programs: convergence of
TD (§ 4.1) and stability of SGD (§ 4.2).

3 IMPLEMENTATION OF safe-coupling

In this section we present safe-coupling®, a Haskell library that exports an interface for proba-
bilistic programming and permits relational probabilistic verification using Liquid Haskell (§ 3.1).
Table 1 summarizes the five main modules of safe-coupling that define distance (§ 3.2) and the
probabilistic monad (§ 3.3), assume relational (§ 3.4) and distance (§ 3.5) axioms, and prove relational
theorems (§ 3.6). In section (§ 5), we formally justify the assumptions made by safe-coupling.

3https://github.com/oquechy/safe-coupling
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Table 1. Summary of safe-coupling library. LoC is commented lines of Haskell Code.

module name LoC
1. | Data.Dist 155
2. | Monad.PrM 93
3. | Monad.PrM.TCB.Axioms 43
4. | Monad.PrM.TCB.Dist 62
5. | Monad.PrM.Theorems 100

Total 453

3.1 Liquid Haskell Preliminaries

Verification with Refinement Types. Refinement types are used to do “light” verification. For
example max of two probabilities (i.e. doubles between @ and 1) is also a probability:

max :: Prob — Prob — Prob
max x y = if x <y then y else x

To achieve SMT decidable and automatic verification, refinement type systems clearly separate the
executable code (here, the Haskell definitions) from the logic (here, the predicates on the refinement
types). In the max example, every caller of max knows the type signature (i.e. that the result is also
Prob), but not its implementation (i.e. that it returns one of its arguments). This way verification is
modular, but, by default, the Haskell function does not exist in the logical fragment.

User Defined Functions in the Logic. An attempt to refer to user defined definitions in the re-
finement predicates will lead to an undefined error. For instance, below we define a proof that
¥V x y. x < max x y as a function whose arguments encode the quantified x and y and its result is
a unit refined with the desired predicate. (Notation: we simplify {v: () |p} to {p3}.)

{-@ not_found :: x:Prob — y:Prob — {x < max x y} @3} -- ERROR: max is unknown
not_found _ _ = ()

Since refinement types clearly separate the executable code from the logic, the above specification
leads to an error: max is unknown to the logic. There are two ways to lift executable definitions in
the logic: 1) axiomatization and 2) reflection.

1) Axiomatization of max defines a logical uninterpreted function that has the same refinement
type and returns the same result as the executable max, but max’s definition is not available in the
logic. For example, one can use axiomatization to show @ < max x y < 1butnotthatx < max x y:

{-@ axiomatize max @-}
{-@ ok :: X:Prob — y:Prob — {0
{-@ error :: x:Prob — y:Prob — {x

< max x y} @3} -- max's specification is known
< max x y} @3} -- max's definition is unknown

2) Reflection of max defines a max function in the logic and further makes its definition available:

{-@ reflect max @-}
{-@ theorem :: x:Prob — y:Prob — {x < max x y} @3} -- max's definition is known
theorem _ _ = ()

Reflection of executable functions permits “deep verification”, i.e. reasoning about sophisticated
properties like distance of two probabilistic runs. Yet, for decidable refinement type checking, this
reasoning requires explicit (user-provided) proofs. Importantly (but not surprisingly) functions can
only get reflected, when their definitions consist only of reflected or axiomatized functions. For
example, in our setting, functions imported from an unverified Haskell library cannot get reflected.
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Proof Terms. Liquid Haskell is using refinement types to encode theorems [Vazou et al. 2018].
The definitions of these functions can be unit (then the theorem is trivially proved by SMT and
existing automation) or can contain inductive calls and combine other proof terms using proof
combinators. Usually, such definitions do not have runtime meaning: if executed they will not
produce any interesting result. But, since Liquid Haskell is checking for totality and completeness
of these definitions they encode mathematical proofs.

We call theorem a refinement type specification that has a proof term, like the theorem for
max defined above. As an alternative, Liquid Haskell’s assume keyword lets you assume axioms
(refinement types) that one cannot prove. We use such axioms to encode properties of axiomatized
functions. For example, when max is axiomatized we can define two axioms that describe its behavior.

{-@ axiomatize max @-}
{-@ assume max1 :: x:Prob — y:Prob — {x
{-@ assume max2 :: x:Prob — y:Prob — {y

max x y} @-}

<
< max x y} @}

Since max is axiomatized, its definition is not available in the logic, so none of the above axioms

can be proved.

3.2 Data.Dist: Definition of Distance

We used Liquid Haskell to define the refined data type Dist a that encodes a metric, as follows.
{-@ data Dist a = Dist {

dist a — a — {v:Double | 0.0 < v}
, identity :: x:a — {dist x x == 0.0}
, symmetry x:a — y:a — {dist x y == dist x y}
, trinequality :: x:a — y:a — z:a — {dist x z < dist x y + dist y z}

} e}
The first field of Dist contains the distance function dist on any expressions of type a: it is a
function that given two arguments of type a returns a non negative Double. The next three fields
capture the metric’s axioms for identity of indiscernibles, symmetry, and triangle inequality.
In this module, we further defined the distance metric on doubles and natural numbers:

distDouble :: Dist Double

distNat :: Dist Nat
These definitions contain both the definition of the function dist and the proofs of the metric
axioms on the concrete distance. Further, we defined a function that computes distance between
two same-length lists of a given a Dist a:

{-@dList :: Dist a — xs:[a] — ys:{[a] | length xs == length ys} — {v:Double | @ < v} @-}

We proved all the metric axioms of dList, yet, since there exists the same-length dependency it
is not possible to define a (well-typed) Dist [a] function. Still, we use the above definitions to
compute distance between natural numbers, doubles, and their lists:

assert (dist distDouble 42.0 40.0 == 2.0)
assert (dList distDouble [42] [40.0] == 2.0)

3.3 Monad.PrM: Definition of the Probabilistic Monad

The module Monad . PrMis essentially a wrapper around an executable Haskell probability monad. We
chose the probabilistic functional library probability, due to its clear interface. Our development
uses probability to execute (and test) our probabilistic programs, but our mechanized proofs do
not depend on it and could use alternative libraries (e.g.monad-bayes [Scibior et al. 2015]).
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The underlying probability library (here prefixed as PLib) exports the type T prop a, that
essentially maps each a to a probability prop and defines the monadic and probabilistic primitives.

The data type. Our probability monad type instantiates prop to the probability type Prob.
type PrM a = PLib.T Prop a

Axiomatized primitives. For each monadic (>>= and pure) and probabilistic primitive (bernoulli,
uniform, and choice) operations we used the probability functions to define the Haskell function
and axiomatized (as described in § 3.1) them in the logic. For example, pure is defined as follows:

{-@ axiomatize pure :: x:a — PrM {v:a| v == x} @-}
pure x = PLib.pure x

We followed this encoding for practical reasons: since PLib is not itself verified with Liquid Haskell
(which is a challenging future work) its definitions are not available in the logic. Yet, this encoding
leaves us the flexibility to axiomatize the primitives as desired (§ 3.4 and 3.5).

Reflected functions. Using the axiomatized primitives we defined probabilistic functions, e.g. mapM.
{-@ reflect mapM :: (a —» PrM b) — [a]l] — PrM [b] @-}

Since mapM is reflected, its definition (which is standard) is available in the logic and used to prove
(relational) theorems about mapM (§ 3.6).

3.4 TCB.Axioms: Assumption of Relational Axioms

The first trusted computing base (TCB) of safe-coupling is called Axioms and contains the rela-
tional specification of each axiomatized primitive. It provides the Haskell axiomatized function (o)
and uses it to encode the relational axioms for pure, (>>=), and bernoulli, as presented in § 2.2.

3.5 TCB.Dist: Assumption of Distance Specifications

The second trusted computing base of safe-coupling is called Dist and contains the distance
specification of each axiomatized primitive. It provides the Haskell function kant that (like o) is
axiomatized in the logic and for each distance on a returns the Kantorovich distance on distributions
of a and (as defined in § 2.4) kdist that simply composes kant with dist:

{-@ axiomatize kant :: Dist a — Dist (PrM a) @-3}
{-@ kdist :: Dist a » PrM a — PrM a — {d:Double | @ < d} @-}

This module provides the distance axioms for the axiomatized primitives. In § 2.4 we presented
the axiomatization for bind (bindDist ), pure (pureDist ), and bernoulli (bernoulliDist ). We assume
three more axioms presented in fig. 1. First, unifDist, the distance axiom of unif, states that the
Kantorovich distance between two uniform distributions is zero, when the sampling input lists
are equal up to a permutation. Second, choiceDist, the distance axiom for choice, states that the
Kantorovich distance of two choice expressions choice p e; u; and choice q e, u, is p times
the Kantorovich distance of e; e, and 1 - p times the Kantorovich distance of u; u,, whenp = q.
Finally, pureBindDist is a distance axiom for bind. For soundness reasons discussed in § 5, the rule is
stated only for bind expressions whose second argument is (the monadic lifting of) a pure function.
The axiom requires that the pure functions f; and f, make the distance between two values grow by
at most m; in order words, the distance between f; x; and f, x, cannot exceed the distance between
x; and x, and some fixed constant m. Under this assumption, the Kantorovich distance between (e;
>>= (ppure . f;)) and (e, >>= (ppure . f;)) is bounded by the Kantorovich distance between
e; and e, plus m. This specialized axiom provide a means to upper bound the Kantorovich distance
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{-@ assume unifDist :: d:Dist a — xs;:{[a] | 1 < length xs;}
— xsy:{[a] | isPermutation xs; xs,}
— { kdist d (unif xs;) (unif xs,) == 0} @-}

{-@ assume choiceDist :: d:Dist a — p:Prob
— e;:PrM a — u;:PrM a — e,:PrM a — u,:PrM a
— { kdist d (choice p e; u;) (choice p e, u;) <
p * (kdist d e; e,) + (1.0 - p) * (kdist d u; u,)} @-}

{-@ assume pureBindDist :: da:Dist a — db:Dist b — m:Double
— fj:(@a > b) > e:PrMa — f,:(a > b) — e:PrM a
— (xj:a—>xp:a—{dist db (f; x;) (fr x,)-dist da x; X, < m})
— { kdist db (e; >>= (ppure . f;)) (e, >>= (ppure . f;)) <
kdist da e; e, + m } @}

Fig. 1. Distance Axioms of safe-coupling. Encoding rules T-UNIF, T-CHoick, and T-BINDRET of fig. 8.

between two bind expressions as a function of the Kantorovich distance of their first arguments,
and is instrumental for our case studies.

3.6 Theorems: Proof of Relational Properties

This module proves common theorems using our assumed TCB and the defined functions of
Monad . PrM. Concretely, it provides a simplified version of the bindAxiom when the two bind argu-
ments form a bijectional coupling and a relational specification for the monadic map.

All the properties on this module are proved. Later (§ 5), we provide a formalism that justifies
the assumptions of our two TCB modules.

4 CASE STUDIES

To evaluate safe-coupling we used it to verify two classic machine learning properties: conver-
gence of TD (§ 4.1) and stability of SGD (§ 4.2). § 4.3 summarizes our results.

4.1 Case Study I: Convergence of TD(0)

Our first case study proves convergence for TD(0), a classical algorithm for Reinforcement Learning.

4.1.1 Implementation of TD(0). In the standard reinforcement learning setting, an agent (i.e. the
learning algorithm) repeatedly interacts with the environment, a Markov Decision Process (MDP)
with state space State and set of actions A. At each step, the MDP reacts to the agent’s action by
drawing a new random state and a numeric reward according to a function t :: State — PrM
(State, Double). The current state i of the process is known to the learner, but the exact function
t is not. Given black-box access to t, the goal of the learner is to find a policy map = : State — A
from the state space to the best available action from A that maximizes the learner’s expected
reward over infinite time.

Figure 2 presents the implementation of TD(0), a Temporal Difference (TD) learning algorithm
that estimates the value function v :: State — Reward of the MDP, i.e. the expected reward at
each state if the agent were to repeatedly act according to some assumed policy . For simplicity
of verification, we defined State as {s:Nat| s < n} and functions on State as lists of length n.
The TD learner (i.e. tde) takes as input the number of iterations n, a transition function t, and an
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import Monad.PrM -- mapM defined here

tdo :: Int — [PrM (State, Reward)] — [Reward] — PrM [Reward]
tdd n t v = iterate n (act t) v

act :: [PrM (State, Reward)] — [Reward] — PrM [Reward]
act t v = mapM (sample t v) [0..length v]

sample :: [PrM (State, Reward)] — [Reward] — State — PrM Reward
sample t vi=do (j, r) «t!li
pure (update v i j r)

iterate :: Int - (a > PrMa) - a —» PrM a
iterate @ _ x = pure x
iterate n f x = f x >>= iterate (n - 1) f

update :: [Reward] — State — State — Reward — Reward
update vi jr=0-a) * (vl i)+a*x(r+y*xv!lj
type State = Int

type Reward = Double

Fig. 2. Implementation of TD(0).

estimate of v and it iterates through the n states. At each iteration i, the learner runs sample that
draws a reward and transition (j, r) from the ith element of t. Then, the estimate v j is updated
by incorporating the observed reward r and the estimated value v j of the new state. Estimated
rewards in the future are reduced by the factor y € [0, 1). Higher y allows v to converge faster.

4.1.2  Convergence for TD(0). Our goal is to show that tde converges to a stationary distribution
independently of its initial input. This can be achieved by proving that tde is contractive on v. One
potential approach would be to prove that fork = « * y + (1-a),

{-@ td@Goal :: n:Nat — t:[PrM (State, Reward)] — v;:[Reward] — v,:[Reward]
— {kdist dList (td® n v; t) (td® n v, t) < k" * (dist dList v; v,)} @}

Instead, we prove a stronger property that tde is contractive for all possible outcomes (via lifting).
To do so, first we defined a pure (to be lifted) predicate that bounds the distance (since Liquid
Haskell does not permit lambdas in the refinements):

bounded :: Dist a — Double — a — a — Bool
bounded d m vl v2 = dist d vl v2 < m

Using bounded we define the tdo specification as follows:

{-@ td@Spec :: n:Nat — t:[PrM (State, Reward)] — v;:[Reward] — v,:[Reward] —
{¢ (bounded dList (k"™ % (dist dList v; v;)) (tde n v; t) (tde n v, t)} @-}

The tdeSpec specification implies our original tdeGoal. This is because a bound property on all
outcomes implies an average bound:

{-@ bound :: d:Dist a — k:Double — e;:PrM a — e,:PrM a
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type PDouble = {Double | @ < m}

{-@ iterateSpec :: m:PDouble — n:Nat — f:([Reward] — PrM [Reward])
— (m:PDouble — x;:[Reward] — x,:[Reward] —
{bounded dList m x; x, = o (bounded dList (m * k)) (f x;) (f x,)})
— rj:[Reward] — r,:[Reward]
— {bounded dList m r; r, = o (bounded dList (m * k"))
(iterate n f r;) (iterate n f r,)} @-}

{-@ actSpec :: m:PDouble — t:[PrM (State, Reward)] — v;:[Reward] — v,:[Reward]
— {bounded dList m v; v; = o (bounded dList (k * m)) (act t v;) (act t v,)} @-}

{-@ sampleSpec :: m:PDouble — t:[PrM (State, Reward)] — v;:[Reward] — v,:[Reward]
— 1i:State
— {bounded dList m v; v, = o (bounded distDouble (k * m))
(sample t v; i) (sample t v, 1)} @-}

{-@ updateSpec :: v;:[Reward] — v,:[Reward] — i:State — j:State — r:Reward
— {distD (update v; i j r) (update v, i j r) <
k * max (distD (v; !! i) (v, ! 1)) (distD (v; !'! 3) (vp !! §))} e}

Fig. 3. Relational Lemmas for the td@Spec Proof; where distD x y = dist distDouble x y.

— {o (\x; x, — dist d x; x, < k) e; e, = kdist d e; e, < k } @-}

The reverse implication does not hold: two distributions can have a Kantorovich distance that is
upper bounded by k and do not satisfy the lifting of bounded d k. As a counterexample, assume
e; = [(3,0.5), (77, 0.5)]ande, = [(7,0.5), (75, 0.5)], thenfor k = 3 and d the distance of
natural numbers, the right side is true (i.e. kdist distNat e; e, < 3), but the left side does not
hold. Thus, and to our surprise, we could prove a stronger property than originally anticipated,
and in a simpler system with plain, non-quantitative liftings.

4.1.3  Proof of Convergence for TD(0). We proved tdeSpec in 128 lines of (Liquid) Haskell code
and, as summarized in table 2, we used five lemmas; one for each used function. We named each
lemma by postfixing the name of the function with Spec. The specification mapMSpec comes from
the safe-coupling library (§ 3.6), while the remaining lemmas are presented in fig. 3.

The proof of each lemma, like binsSpec of § 2.3, is following the structure of the function
definition. Concretely, tdoSpec is proved by iterateSpec, using actSpec as the proof requirement;
iterateSpec is proved by induction, using the pure and bind axioms; actSpec is proved by mapMSpec,
using sampleSpec as the proof argument; sampleSpec is using the axioms and updateSpec, which
is proved using the linearity and triangular inequality of the distance on doubles.

In short, the great challenge was to come up with the correct invariant for tdeSpec, after which
the proof follows the structure of the tde’s implementation.

4.2 Case Study IlI: Stability of SGD

Supervised machine learning algorithms are algorithms that aim to select the best fitting model
from a class of parametric models by iteratively refining some initial parameter, based on some
training set. A good measure of the quality of these algorithms is their, so called, generalization
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import Monad.PrM
import Data.Derivative (grad)

{-@ sgd :: zs:{[DataPoint] | 2 < length zs} — w@:Weight — as:[StepSize]
— f:(DataPoint — Weight — Double) — PrM Weight @-}
sgd _ w0 [] _ = ppure w@
sgd zs wO (a:as) f = do z « unif zs
W «— sgd zs wd as f
pure (update z a f w)

update :: DataPoint — StepSize — (DataPoint — Weight — Double)
— Weight — Weight
update z a fw=w - a * grad (f z) w

{-@ type StepSize = {v:Double | @ < v} @-}

type StepSize = Double
type DataPoint = (Double, Double)
type Weight = Double

Fig. 4. Implementation of SGD.

error, which measures how they perform on previously unseen data. One sufficient condition for
an algorithm to have a controlled generalization error is to be algorithmically stable [Bousquet and
Elisseeff 2002]. Informally, a supervised machine learning algorithm is algorithmically stable if the
output of the algorithm is not overly dependent on any single element in the training set. More
formally, a supervised machine learning algorithm is e-stable if the Kantorovich distance between
the parameters obtained by running the algorithm on the same initial parameter and two adjacent
training sets (i.e. training sets that differ in a single element) is upper bounded by e. In this case
study, we show that Stochastic Gradient Descent, the de facto backpropagation algorithm for deep
learning, is algorithmically stable. The proof follows the steps of [Hardt et al. 2016].

4.2.1 Implementation of SGD. Figure 4 presents our sgd implementation, a variant of Stochastic
Gradient Descent. The algorithm takes as input a training set zs, modeled as a list of data points, an
initial weight we, a list of learning step sizes as, and loss function f. In the general setting, the loss
function f in the definition of SGD would be a vector function Z x R¢ — R, where Z is the data
set and R is the weight space. For the sake of simplicity, in our implementation Weight is defined
as a single value of type Double which corresponds to d = 1. We assume that f is L-Lipschitz.

The function sgd recursively computes a sequence of so-called weights (or classifiers) starting
from the initial parameter wo, by updating at each step the current weight w into update z a f w,
where z is sampled uniformly from data set zs and the learning step « represents the influence of
each iteration in the final result.

In our proof, we unfold the definition of uniform sampling based on the operator choice. The
unfolding is possible when length zs is at least 2, which is encoded as a precondition in sgd.

{-@ unif :: {xs:[al | @ < length xs} — PrM a @-}

unif :: [a] — PrM a

unif [a] = pure a

unif zs@(x : xs) = choice (1.0 / natToD (length zs)) (pure x) (unif xs)
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{-@ assume contractive :: d:Dist Double — «:StepSize
— f:(DataPoint — Weight — Double) — =z:DataPoint
— wj:Weight — w,:Weight
— {dist d (update z a f w;) (update z a f w;)
== dist d ww'} @}

{-@ assume bounded :: d:Dist Double — a:StepSize
— f:(DataPoint — Weight — Double)
— z;:DataPoint — z,:DataPoint — w;:Weight — w,:Weight
— {dist d (update z; a f w;) (update z, a f w,)
== dist d w; w, + 2 * lip * a} @}

Fig. 5. Assumptions of the sgdDist Proof.

To implement update, we assume a partial function grad :: (Weight — Double) — Weight
— Double which computes the gradient of f. Our proof does not rely on grad’s definition, therefore
it can be imported from any automatic differentiation library.

4.2.2  Stability of SGD. The stability statement bounds Kantorovich distance of two runs of sgd on
data sets zs; and zs, which differ in exactly one element. We encode this by requiring the existence
of data points x and y and a common tail zs such that (x:zs) and (y:zs) are permutations of the
given datasets. We express the stability statement as a refinement type specification, as follows.

{-@ sgdDist :: d:Dist Double

x:DataPoint — y:DataPoint — zs:{[DataPoint] | 1 < length zs}
zs;:{DataSet|isPermutation (x:zs) zs;} — ws;:Weight
zs,:{DataSet|isPermutation (y:zs) zs,} — ws,:Weight
as:StepSizes — f:LossFunction

{dist (kant d) (sgd zs; ws; as f) (sgd zs, ws, as f) <

dist d ws; ws, + estab (length zs;) as} @-}

U A

estab :: Nat — [StepSize] — Double
estab 1 as = 2.0 * lip / natToD 1 * sum as

That is, the Kantorovich distance between two runs of sgd is bounded by the distance of the different
weights plus an €, defined by the helper function estab. Note that estab does not depend on the
different inputs of sgd, but depends on 1ip, which represents the Lipschitz constant L of function f
and is axiomatized in our proof.

4.2.3  Assumptions. Proofs of algorithmic stability are traditionally based on strong assumptions
on the loss function f : Z X RY — R, namely:

(1) LLipschitz: [[f (z wi) = f(zwa)l| < Liiw, = wal;

(2) Convex: f(z,w1) = f(z,ws) + (Vf(z,wz), w; — wy); and

(3) B-smooth: [|[Vf(z,w1) — Vf(z,wo)|| < Bllwi — wy|| and for all step sizes @, aff < 1.
where ||-|| and (-) are the norm and the scalar product on R? respectively.

Instead of directly encoding these assumptions, which require advanced mathematical machinery
that is not readily available in Liquid Haskell, we assume two properties of the update function.
These properties follow from the assumptions on the loss function and are presented in fig. 5.
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{-@ assume leftId :: x:a — f:(@a > PrM b) — { (pure x) >>=f == f x } @-}

{-@ assume assoc :: x:PrM a — g:(a —» PrM b) — f:(b — PrM c)
= { (x>»=g) >=f = x>>= (\x > g x >>=f) } @}

Fig. 6. Monad laws.

The contractiveness axiom for update (contractive) states that the distance of update on the
same data point is equal to the distance of the weights. The boundedness of the difference of
gradients (bounded) states that the distance of update on different data points is equal to the
distance of the weights plus 2 * 1lip * a.

Lastly, we assume two monad laws (fig. 6). There is a convention that every Haskell monad
adheres to monad laws, two of which we use in the proof of stability. Left identity law states that
for every x:a and probabilistic function f: (a — PrM b), the distribution f x is equal to a Dirac
distribution of x sequentially composed with f. The associativity law allows us to compose two
sequential probabilistic computations f and g into a single computation \x — g x >>= f.In our
proof, after the unfolding of unif, these two laws once again alter the program structure.

4.2.4  Proof of Stability of SGD. Using the assumptions described above, we proved sgdDist in 251
lines of Liquid Haskell code. The proof proceeds by structural induction on as. Furter, we applied
three program transformations to the @sgd@ definitions.

First, in the inductive case of sgd, sampling from unif zs; is replaced with unif (x:zs) by using
unifDist axiom and identity property of distance.

Second, sgd zs; ws; as f is further transformed by unfolding the definition of unif. For the
next modification, we use the property of distributivity of choice over bind:

{-@ choiceBind :: p:Prob — e;:PrM a — e,:PrM a — f:(a@a — PrM b)
— {choice p e; e, >>= f = choice p (g >>= f) (e >>= )} @-}

This property is proved by applying the assoc law and unfolding the definition of choice:

choice :: Prob - PrMa — PrM a — PrM a
choice p a b = bernoulli p >>= \x — if x == 1 then a else b

After rewriting with choiceBind, the inductive case of sgd is brought into the following shape:

sgd zs wo (a:as) f
= choice (1.0 / natToD (length (x:zs)))
(pure x >>= (\z — sgd (x:zs) w@ as f >>= (pure . update z a f)))
(unif zs >>= (\z — sgd (x:zs) w0 as f >>= (pure . update z a f)))

Lastly, the leftId law is applied to simplify the first branch of choice.

We use the above structure of @sgd@ to distinguish between two cases that correspond to the
two branches of choice. In the first possibility, where the two algorithms sample the same element
from zs, we apply the contractiveness property of update. Whereas, in the case where the two
algorithms sample the elements in which the datasets differ (x and y), we apply boundedness of the
difference of gradients. The choiceDist axioms then guarantees that Kantorovich distance increases
by 2x1lip*a/n at each iteration, from which we conclude by induction. Other than choiceDist, our
proof is using the pureDist and pureBindDist axioms, respectively in the base and inductive case.
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Table 2. Summary of case studies. LoC is lines of executable Haskell code to define the implementations.
Proof LoC is lines of commented Liquid Haskell code to define refinement type specifications and their
proofs. Lemmas is the number of total lemmas proved. Axioms is the assumed specifications. Time is
verification time in seconds on a 2,8 GHz Dual-Core Intel Core i5, RAM 8 GB 1600 MHz DDR3.

Case study LoC | Proof LoC | Lemmas | Axioms | Time (sec)
bins Spec (§ 2.3) 21 28 3 0 8
bins Dist (§ 2.5) 143 7 0 113
tdo (§ 4.1) 31 128 5 0 24
sgd (§ 4.2) 22 251 7 3 51
Total 74 550 22 3 196

4.3 Quantitative Summary

Table 2 summarizes the effort required to verify the three examples that we presented through the
paper: bins, tde, and sgd. In total, we used 550 lines of proof code, i.e. commented (Liquid) Haskell
lines that express refinement types specifications and their proofs, to verify 74 lines of executable
Haskell code, giving an executable-to proof-ration of almost 6, which is high but expected, given
that our proofs are extrinsic. Most of our proofs directly follow the structure of the definitions,
thus are easy, once the proper specification is set. The exception is the distance proof for bins
(§ 2.5) which required the construction of a “ghost” proof distribution, providing evidence that such
sophisticated proofs are feasible in our framework. The same proof is an outliner for our verification
time: it requires almost 2 minutes, while the rest of the proofs need less than 1 minute. We note that
for tde we distributed the proof over multiple Haskell modules to allow fast and interactive proof
development, since Liquid Haskell verifies per-module and provides local proof-error messages.

5 PROOF SYSTEM

To justify the axioms of our implementation, in this section, we define A", a core probabilistic
A-calculus, with a set of relational proof rules. Although each proof rule of the relational program
logic is encoded independently from others as an axiom in Liquid Haskell, we follow the same
style of presentation as Aguirre et al. [2017] and treat our set of proof rules as a proof system. This
treatment is primarily motivated by our desire to prove a crisp statement for soundness. We also
note that for the purpose of establishing soundness, we only consider discrete distributions.

This section is organized as follows: we define the syntax (§ 5.1) and type system (§ 5.2) of
ARP then, the axioms (§ 5.3) and the proof rules (§ 5.4) of our logic; and finally, the denotational
semantics of ARP (§ 5.5) which we use to show soundness (§ 5.6).

ARP

5.1 Syntax

We consider a typed probabilistic A-calculus with algebraic datatypes and distributions (fig. 7).
Types are built from base types using the usual function space constructor and type constructors
for lists (1ist) and probability distributions (prM; which encodes the Haskell type PrM of § 3.3).

ARP features a rich set of constants that include natural (n) and real (a) numbers, the special
constant +oo, the true and false booleans, the nil and cons list constructors. Furthermore, AR?
features constants for arithmetic operations, boolean operations, equality, and inequality.

Variables in ARY include three special variables d, r;, and r, that respectively model distance and
the left and right result of computations.
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Types ts == nat|bool|listt Discrete Types
| real|t—t|prMt Continuous Types
Constants ¢ == nil|cons|neN|aeR*|+oo| true| false
[ +[=1-1/I=l<IAlVI=] =
Expressions e,u == unife|bernx|choicexee Probabilistic
rete|bindee Monadic

case e of {nil — e;consx x — e}

|
| Axel|ee]|c]|x Pure
|
| let x=e in e

Assertions p == el|p[AV,=]p|-p Boolean
| Vx:t.p|3Ix:t.p Quantifiers
| oepee Lifting
Environments
Typing r == 0|xt,T
Predicate 0] 0|p,@

Fig. 7. Syntax of ARP. (Variables include ry, r», and d.)

Expressions are built from constants and variables using the standard A-calculus and monadic
constructions. The former include constructions for lambda abstraction (Ax.e), application (e e), case
analysis (case e of {nil — e;cons x x — e}), and structurally recursive definitions (let x =
t in e). The latter include the probabilistic primitives unif e that probabilistically returns an
element of its input list e, with uniform distribution, bern x that returns 1 with probability x,
otherwise 0, and choice x e; e, that returns the distribution e; with probability x and e, with
probability 1 — x. These primitives model our implementation interface (§ 3.3).

Assertions include (arbitrary, but boolean typed) expressions of AR and boolean operators. To
allow reduction to RHOL [Aguirre et al. 2017], assertions also include quantifiers even though our
system does not explicitly use them. Finally, AR¥ has the lift assertion oxp e; e, that encodes the
combination of (¢) and kdist of our implementation (§ 3). Here k is a real typed expression, p is a
relational assertion on two arguments of type t; and #; respectively, and e; and e, are probability
distributions over t; and #; respectively. The assertion ensures that p holds for the distribution
coupling and that the Kantorovich distance between the two distributions is bounded by k.

We adopt standard conventions, e.g. g - f stands for Ax. g (f x). By abuse of notation, we write
ret - f as shorthand for Ax. ret (f x) and oxp as syntactic sugar for ox (Ar; rr.p) r; rr, i.e. when the
lifting happens on the special variables r; and r,. By convention, we also write ¢p as a shorthand
for o, p. As usual, we also let e[e,/x] denote the capture-free substitution of e, for x in e.

5.2 Type system

We equip our language with a simple type system which serves three purposes: first, it ensures that
expressions respect the type signatures of operators; second, it ensures that recursive definitions
are structurally terminating. Our logic is agnostic to the mechanism used to enforce structural
termination, so we leave this mechanism abstract. Finally, our type system restricts the use of
distribution types to discrete types, so that types and expressions of our language can be given a
set-theoretic interpretation—we discuss the case of continuous distributions in the § 7.

5.3 Axioms

The special variable d encodes distance that we assume satisfies the axioms of an (extended) metric:
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Relational Probabilistic Typing [;dFe:prMt; ~ep:prMt, | oxp

T-Bot

I;®OFe :prMi; ~ e, : prMt, | o4 otrue

rit ety L0 F p = pyy rity rety, ;@ F k < kyy

I;®Fe :prMit; ~ e, i prMt, | o
i . P T-WEAKEN

[;®Fe :prMt; ~e :prMt, | op P

I;OFe :1listt ~e,: listt | isPermutation r; r, A =(r; = nil)
T-Un1r

@ +unife :prMt ~unife, : prMt | ogry =1,

I®rx;:real ~x,:real |[0<r <r. <1
T-BERN

@+ bernx;:prMnat ~bernx, : prMnat [ oy, 0 < <1 <1
I;®&rx;:real ~x,:real |0<r=r, <1

[;@re:prMt; ~ e :prMt, | of,p L@ b up:prMit; ~ up : prMt, | op, p
T-CHOICE

I';® F choice xj e ug : prM t; ~ choice x, e, uy : prMty | Okt (1-x1) ko

T;O0re :t~e :t|prr Ad(r,r) <k
1 r |Plr (lr) TReT

[;®Frete:prMt~rete, :prMt | oxp
[;dFe:prMs ~e :prMs | oxq
X8, %08, T5q xp %, @ F fixp :prMt ~ frxp : prMt | 0g.a(x,x,)+bP
I;®+binde fi:prMt ~binde, fr : prMt | ogkspp

T-BinD

Fig. 8. Typing of ARP where k ranges over distance (real typed expressions). We use the syntactic sugar

g-f=Ax.g (f x) and orp = o (Arp rpr.p) 1y 1y

Definition 5.1 (Metric Axioms). For every type t and every x, y, z of type ¢:
(1) Identity:d(x,y) =0 & x =y.

(2) Symmetry:d(x,y) = d(y, x).

(3) Triangular Inequality: d(x,z) < d(x,y) +d(y, z).

We assume that the distance d is defined for all types of AXF. For nat and real it is defined as
d(x,y) = |x — y|. For booleans it is defined as d(x,y) = 1if x # y, ie. it coincides with the discrete
distance on booleans. For lists of equal length, we assume the distance is the maximum of distances
between elements at the same positions. When the length is different, the distance is infinite. For
functions, it is defined as the maximum distance over all function domains and for distributions, as
the Kantorovich distance (of Villani [2009]). These assumptions are required for soundness.

5.4 Proof System

Our proof system uses two judgments to decide logical implication and relational typing. The first
judgment I'; @ + p states that the assertion p is valid under the assumptions of @, where all the free
variables of ® and p appear in T. This first judgment is similar to [Aguirre et al. 2017] and the proof
rules are thus omitted.

The second judgment I'; @ + ¢; : t; ~ e, : t, | p states that the expressions e; and e,, respectively of
types t; and t, under T', satisfy the predicate p, under the assumptions of ®. To encode this property
the predicate p might refer to two special variables r; and r, (i.e. not bound in the environment I')
that respectively refer to the expressions e; and e,. For example ;0 + 1 : nat ~2:nat | r; <r,
holds, since 1 < 2. In general, the relational typing means that I'; @ + p[e;/r;] [e,/7/].
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Contexts. Contexts are pairs consisting of a typing environment (I') that maps variables to their
types and a logical environment (®) consisting of assertions.

Proof Rules. Figure 8 defines selected proof rules T'; ® + ¢; : prM #; ~ e, : prM ¢, | p. The proof
rules are given for monadic expressions, in which case the relational assertions are of the form oy p.
Informally, these assertions state that 1) the two related expressions satisfy the lifted predicate p
and 2) the Kantorovich distance between the two expressions is upper bounded by k.

Rules T-Bot and T-WEAKEN are non-syntax-directed rules that can be applied to any probabilistic
expression. Rule T-Bor states that any two probabilistic expressions e; ~ e, satisfy the (lifted) true
predicate and have expected distance bounded by +co. Rule T-WEAKEN weakens the lifted predicate
okp to ok P, provided p = p,, and k < k,,. These two requirements are established by pure logic.

The rules T-Un1F, T-BERN, and T-CHOICE are used to relate probabilistic primitives. Rule T-UNIF
states that the uniform distributions of two non-empty permutations of the same list produce
equal values and have zero expected distance. The lifted predicate ¢yr; = r, ensures that the two
distributions are the same and accordingly their expected distance is zero. We note that more
general rules exist, but are omitted here since they are not used in our examples.

The rule T-BERN states that the Bernoulli distribution bern x, dominates bern x;, when x; < x,.
The condition is expressed by the pure predicate r; < r, in the premise, while the conclusion of the
rule lifts the same predicate to encode dominance. Finally, it ensures that the distance of the two
distributions is bounded by |x, — x;|.

The rule T-CHoICE relates two choice expressions choice x; e; u; (with i being [ or r). To do so,
it requires that x; and x, are equal probabilities, and that the pairs of distributions ¢; and e, and
respectively u; and u, satisfy the same lifted predicate op and respectively have distances k. and k.
It then ensures that choice will also satisfy the predicate ¢p, while the distance is x; -k, + (1 —x7) - ky,.

The rules T-ReT and T-BIND are used to relate monadic primitives. The rule T-RET relates ret e;
with ret e,. Using pure relational typing, it requires that e; and e, satisfy the predicates p (in which
the relational variables can freely appear) and their distance is bounded by k. Note that bounding
distance in the pure setting is encoded as a logical statement; while a weakening rule can bring
the premise in the required syntactic form, potentially with infinite distance. The rule concludes
that the return expressions satisfy the lifted p (since the relational variables are not monadic) and
their distance is bounded by k. The rule T-BIND relates two expressions bind e; f; x;, (with i being
I or r). In the first premise, it assumes that e; and e, satisfy some lifted predicate oq. In the second
premise, the predicate q is assumed in the predicate environment to check the application f; x;
where x; is the value of the probabilistic argument e;, i.e. satisfies the lifted predicate oz p, where
k’ is an affine function of d(xj, x,). The bind expressions are then related by ¢ x4pp, where a and b
are the coefficients of the affine function.

5.5 Denotational Semantics

Here we define denotational semantics of ARF by defining the denotations of types and typing
environments (§ 5.5.1); expressions (§ 5.5.2); and assertions and predicate environments (§ 5.5.3).

5.5.1 Denotations of Types and Typing Environments. Our denotational semantics only considers
discrete distributions, so that expressions have a straightforward set-theoretic interpretation.
Definition 5.3 inductively defines the denotations of types. The interesting case is prM that gives a
probability distribution, as per definition 5.2.

Definition 5.2 (Discrete Probability Distribution). A probability distribution over a set C is a
function p : C — [0, 1] such that g, #(x) = 1. The support of p is defined as supp 1 = {x |
x € C A p(x) # 0} and needs to be discrete.
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We denote the set of discrete distributions over C as D(C).

Definition 5.3 (Denotations of Types). For each type ¢, [t] is inductively defined as follows:
[bool] = B [nat] = N [listt] = 1listp
[erMe] = D([t])  [real] = R [t =] = [&] =[]

Definition 5.4 lifts the denotation of types to typing environment. Concretely, the denotation of
a typing environment I' is a function p that maps each declaration (x : t) in T to an element in the
denotation of t.

Definition 5.4 (Denotation of Type Environments). (T) = {p | Y(x:¢t) € T.p(x) € [t]}

5.5.2  Denotations of Expressions. The denotation of an expression e is defined for a fixed model p
as [[e] , in definition 5.5. The denotations of the pure fragment are standard, where the model is
used to define the denotation of a variable as p(x) and we skip the verbose definitions for case
and let. The probability and return cases use standard distributions, while monadic bind maps to
distribution composition, defined in definition 5.6.

Definition 5.5 (Denotations of Expressions). For each expression e and model p, [e] , is defined as:

[unife], = U, Ixl, = p)
[bernx], = By, [el, = ¢
[choicexeu], = [x],-[el,+(1=1[x],)-[ul, [Axel, = Aofe]pro/n
[bindeu], = scomp/[e],[u], leul, = Tlel,[ul,

[ret e]]p = 5|leJ]p
where 9, represents the Dirac distribution at x, Uy, represents the uniform distribution over a
non-repeating list xs, and B, represents the p-biased Bernoulli distribution on {0, 1}.

Definition 5.6 (Sequential Composition Distribution). Let u € D(C) and f : C — D(C;). Sequential
composition distribution scomp y f is defined as:

scomp 1 f(y) = Z p(x) - f(x)(y)

xeC

The denotational semantics of expressions is partial, in the sense that some simply typed ex-
pressions do not have a denotation. For instance, the interpretation of unif is only defined on
non-empty lists and the interpretation of choice is only defined when x takes values between 0
and 1. It would be possible to make the semantics total by using default values to handle cases not
covered by our semantics. However, this would be superfluous because the refinement type system
will ensure that all typable expressions have an interpretation.

Our interpretation enjoys a standard soundness theorem.

PROPOSITION 5.7 (SET-THEORETICAL SOUNDNESS). IfT + e :t and p € (T)), then [e], € [t].

5.5.3 Denotations of Assertions and Predicate Environments. Finally, we inductively define deno-
tations of assertions in definition 5.12. Most of the cases are standard except from the case for
lifting that relies on Kantorovich couplings (also known as expectation couplings), which we define
in definition 5.10 and, in turn, relies on basic definitions of expectation and marginals.

Definition 5.8 (Expectation). For all y € D(C) and f : C — R, the expected value Ex.,[f(x)] (or
E,[f]) of f is a partial function defined as:

Exeulf()] = ) p(x) - f(x)

xeC
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Definition 5.9 (Marginals). For all p € D(C; X C3), the first and second marginals of u are
respectively the distributions 71 (¢) € D(Cy) and w3 (i) € D(C;) defined as:

m(p(x) = Y uxy)  m@Ey) = Y pGy)

yeC, xeCy

Intuitively, the marginals are the “projections” of the couplings, i.e. “dependent products” over
distributions. Using these, we define Kantorovich coupling, i.e. the conditions that render o R valid.

Definition 5.10 (Kantorovich coupling). For all u; € D(C1), p2 € D(C2),R € C1 XCy,d : C1 XCy —
R*, and k € R, |E okR (11, ii2) iff there exists p € D(A; X A,) such that:

(1) m(p) = gy and mo(p) = po (2) supp(p) SR (3) Exyyepld(x,y)] <k

As usual, = p means logical validity of p. The first clause corresponds to the standard definition
of coupling. The second clause corresponds to the definition of R-coupling and is connected to
lifting by the following equivalence: oR iff there exists an R-coupling. The last clause is specific to
Kantorovich coupling and states that the expected distance with respect to the definition y is upper
bounded by k. Since the Kantorovich distance corresponds to the minimum expected distance over
all possible couplings, it follows that k is an upper bound for the Kantorovich distance. This is
captured by the following lemma.

LEMMA 5.11. If|= okR (w1, 2), then |= oR (1, p2) and optrue(u, p2).

Next, we define the denotation of assertions. We use the Kantorovich distance to interpret
distance over distribution types and expectation couplings to interpret lifting, while the rest of the
denotations are standard.

Definition 5.12 (Denotation of Assertions). For each assertion p and model p, [p], is defined as:

el, = lel, [oilAv.=1pl, = [oidlplA V. =1p2d,
[-rl, = -lel, [Vx:t.pll, = Vo:ltllplprom
[expeu], = k], [el,(Lellps [u1,) [B3x:t.pl, = Fo:[t]lplpox
The interpretation of d is defined by induction on types:
[dooor]lp(x,y) = if x=y then 0 else 1 [dnatlp(xy) = Ix-y|
I[dreal]]p(xa y) = | X—-y | [[dlist t]]p(x, y) = max; dt(xia yl)
[domitlp(xy) = maxyesdi(x0,y0) [dorv el p(xy) = inf,  E,  [d]

Here, jix,, ranges over couplings of distributions x and y. For lists of equal length, the distance is
an index-wise maximum distance between elements, as shown above. Distance between lists of
different sizes is infinite.

The denotation of a predicate environment is the conjunction of the denotation of all its predicates.
Definition 5.13 (Denotation of Predicate Environment). [®], = A,collpll,

5.6 Soundness

Our proof system is sound with respect to its denotational semantics. That is, for every model
of the typing environment that renders the predicate environment valid, the denotation of the
predicate, with the special variables r; and r, substituted by the typed expressions, is valid.

THEOREM 5.14 (SOUNDNESS). IfT;® ke : t; ~ e, : t, | p, then for every p € (T)) such that  [®] ,,
we have |= [p[[[e]l,/rid [[er]p/r11p-
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In the appendix we prove soundness of the monadic rules, while soundness for the pure fragment
follows from Aguirre et al. [2017].

As a corollary of soundness and definition 5.10, we get soundness of the probabilistic fragment.
Informally, our judgement relates e; and e, when there exists a coupling y of e; and e, such that
the predicate p holds for all samples with non-zero probability and the expected distance between
samples is less than k.

COROLLARY 5.15 (SOUNDNESS OF PROB. FRAGMENT). IfT; @\ ¢ : prM iy ~ e, : prM ¢, | oxp, then
for every p € (') such that |= [®] ,, there exists a p € D([t;] X [, ])) such that:

(1) m(p) = el and () = [er ]l
(2) supp(p) € {(x1,x7) | x1 € [ti]l, - € [ ] F [p]lp %1 %2} and
3) E(x,y)<—p [d(x,y)] < [[k]]p

5.7 Derived rules

By instantiation and combination of the rules that are already present in the system, we can prove
other, more specific rules. Such rules are called derived. Custom-tailored, they provide shortcuts
for verification of common program constructs. Ultimately, extending the system with a variety
of derived rules minimizes the proof effort for end users. In this section, we present some of the
derived rules of our formalism in fig. 9 and explain their derivation. Only the most practical derived
rules have their counterpart in the implementation of our library safe-coupling. Crucially, we
don’t encode the combined lifting connective oxp. Instead, as discussed in § 3.4 and § 3.5, our
assumptions make separate statements about either lifted predicates or distance bounds.

The rule T-BINDRET relates two bind expressions where the second argument is a pure function,
composed with ret (we use the syntactic sugar for composition g- f = Ax.g (f x)). Such expressions
could be typed by the rule T-BinD followed by T-RET, but this special case permits more convenient
reasoning and is used by our case studies. The first premise of the rule is the same as of the T-BIND,
but the second premise is now using pure relational typing to bound the distance of f’s result
as a function of the distance of its input, i.e. d(r;,r,) < m - d(x;, x,) + ky, so the distance of the
conclusion (m - k. + k;,;) depends on the distance of the e arguments (k).

The rule T-BiND-S1MPL is an instance of the rule T-BIND with the coefficient a set to 0. It assumes
that e; and e, are related by the lifting of p and that the bodies of the bind map pairs of values that
are related by p to pairs of values that are related by oq. In this case the two monadic binds are
also related by oxgq.

Rules T-BErN-L and T-BErN-D are obtained from T-BERN by setting the distance to infinity and
the predicate to trivial respectively. Such rules are more practical for the implementation from
the perspectives of error-reporting and modularity of proofs. In safe-coupling, bernoulliAxiom
corresponds to T-BERN-L while bernoulliDist corresponds to T-BERN-D. Similarly, each rule for
probabilistic primitives from fig. 8, as well as T-BiND-SimpL and T-BINDRET, produce two Liquid
Haskell assumptions.

6 RELATED WORK

First Order, Imperative, Probabilistic Languages. There is a large body of work that builds and
applies program logics to reason about probabilistic programs. Many of these works are based on
first-order imperative languages. Broadly speaking, there exist two main lines of work: the first
line of work focuses on non-relational properties and can be traced back to early work by Kozen
[1985] and Morgan et al. [1996]. Many of these works focus on establishing sound foundations and
have not been implemented in practice. There are however, some noticeable exceptions [Holzl 2016;

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 112. Publication date: August 2022.



Safe Couplings: Coupled Refinement Types 112:25

I®&rx;:real ~x,:real |0<r <r <1

T-BErN-L
I;®Fbernx;: prMnat ~bernx, : prMnat [0 <r <r.- <1

I®rx;:real ~x,:real | T
T-BERN-D

[;® - bernx; : prMnat ~ bern x, : prMnat | oy | T
[;®Fe:prMs ~e, :prMs | oq
Xp:8, X138, T5q x1 X0, @ F f1x7: prMt ~ fr x, : prMt | opp
[;®+binde fi:prMt ~binde, f, : prMt | opp
[@re:prMs; ~ e : prMs, | ok, q
xpsp, XS, L g /ri] [xr /e, @ F fixp sty ~ froxp sty | p Ad(rry) < m-d(xp, xr) + ky

;0 Fbinde (ret - fi) : prMt; ~bind e, (ret - f;) : prMt, | Op.k 4k, D

T-BIND-S1MPL

T-BINDRET

Fig. 9. Derived rules. We use the syntactic sugar g - f = Ax.g (f x) and opp = op(Ary rp.p) 1y 1.

Hurd 2003], including an active line of work in mechanizing or automating proofs of expected cost
of probabilistic programs [Avanzini et al. 2020; Ngo et al. 2018; Tassarotti and Harper 2018].

The second line of work focuses on relational properties; this line of work has been initiated
in [Barthe et al. 2009], and its mechanization in the Coq proof assistant or as a self-standing proof
assistant [Barthe et al. 2011] have been used to verify formally concrete security of cryptographic
constructions. Similar approaches have been developed by the FCF [Petcher and Morrisett 2015] and
CryptHOL [Basin et al. 2017]. These logics have been further extended to reason about differential
privacy [Barthe et al. 2012].

Our work is most closely related to work on expected sensitivity and in particular [Aguirre et al.
2021b; Barthe et al. 2018]. Barthe et al. [2018] introduce the notion of expectation coupling used
in this paper and show how expectation couplings can be used to prove expected sensitivity. In
addition, they provide a relational program logic to prove the existence of expectation couplings
between two probabilistic imperative programs. The program logic manipulates assertions of the
form p, d where p is a relational boolean-valued assertion and d is a relational quantitative assertion.
The proof system departs from classic program logics by being highly not syntax-directed; for
instance, the rule for sequential composition combines the classic rule with a case analysis. This
makes application of the rule rather complex. Moreover the proof system is not implemented.
The program logic is used to prove stability of SGD; however the proof is on paper and not
mechanized. Our work can be construed as an attempt to raise (a streamlined version of) the
program logic from [Barthe et al. 2018] to a higher-order setting. As pointed out in [Aguirre et al.
2021a], lifting quantitative relational logics to the higher-order setting is far from straightforward;
in the terminology of Aguirre et al. [2021a], it seems difficult to define a [0, +co] relational lifting
to instantiate their generic program logic. We forego this issue by restricting our language so that
we can give a direct, set-theoretic, semantics of programs.

Aguirre et al. [2021b] develop a relational weakest pre-expectation calculus for reasoning about
expected sensitivity of a probabilistic imperative language. Their pre-expectation calculus can be
construed as a relational variant of pGCL [Morgan et al. 1996]. The main novelty of their calculus is
the rule for random sampling, which takes the minimal relational pre-expectation over all possible
couplings of the two sampled distributions. They show that their calculus subsumes a fragment of the
logic from [Barthe et al. 2018]. Their calculus is used to verify our two main examples. Interestingly,
their proof of convergence of TD(0) is significantly different from ours. Our alternative proof is
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based on vanilla couplings and establishes a stronger statement: we prove that the distance between
the two outputs is upper bounded for all elements of the coupling, whereas they prove that the
expected distance between the two outputs is upper bounded for the same coupling. Thus, our
statement entails theirs by basic properties of expectations. Lifting pre-expectation calculus to a
higher-order setting is challenging, even in the non-relational setting. Indeed, Avanzini et al. [2021]
develop a two-step approach for reasoning formally about expectations, and in particular expected
cost, of higher-order probabilistic programs. In the first step, probabilistic programs are transformed
into deterministic programs using a variant of the well-known continuation-passing style (CPS)
translation. They show that the translation is faithful: for instance, the expected cost of a program
can be recovered exactly from its translation, by applying the translation to the continuation Ax.0.
In the second step, they use a refinement type system to prove upper bounds of (real-valued)
expressions. The refinement type system uses the notion of admissible predicate to ensure that the
classic rule for fixpoints remains sound in presence of non-terminating computations. Extending
[Avanzini et al. 2021] to a relational setting is an interesting direction for future work.

There are further works that consider expected sensitivity of probabilistic programs. For instance,
Wang et al. [2020] develop an alternative method based on martingale theory for proving expected
sensitivity of probabilistic programs. Their analysis covers a rich set of termination behaviors, in
particular it covers programs with probabilistic loop guards. One drawback of their approach is that
it proves a weaker property, namely expected sensitivity for some finite constant. Their analysis is
implemented and evaluated on several examples, but neither SGD nor TD. Independently, Huang
et al. [2018] propose another automated approach based on symbolic computation to analyze the
expected sensitivity of programs. They also do not analyze SGD or TD.

Relational Reasoning for Higher Order Languages. Nanevski et al. [2011] were among the first
to explore relational reasoning for higher-order languages. Their work defines Relational Hoare
Type Theory (RHTT), a powerful program logic for proving relational properties of stateful higher-
order programs. RHTT is implemented in the Coq proof assistant and is used to verify intricate
information flow properties. The main difference with our work is that RHTT operates on a
shallow embedding of programs and does not support probabilistic reasoning. BiRelCost [Cicek
et al. 2019] is a bidirectional type checker that automatically performs relational and unary cost
analysis requiring minimal user annotations. However, the checker is incomplete and relies on
example-driven heuristics. It is unlikely that the used heuristics would suffice to prove our case
studies. Handley et al. [2019], like us, address this incompleteness by encoding the relational rules
in Liquid Haskell and requiring explicit, user-provided, extrinsic proofs; sacrificing automation in
the name of expressiveness and predictability. Our work applies the technique of Handley et al.
[2019] to reason about probabilistic programs and quantitative specifications.

Verification of Higher Order Probabilistic Programs. There have been two lines of work that
verify relational properties on executable probabilistic programs in F* [Swamy et al. 2016]. First,
rF* [Barthe et al. 2014] is an extension of F* that supports relational reasoning via relational
refinement types. As with F*, type checking generates SMT queries that are discharged by Z3.
Although rF* supports probabilistic programs, reasoning is constrained by syntax-directed typing,
for example the binsDist of § 2.5 cannot be type-checked. We overcome this limitation by support-
ing a richer set of axioms and extrinsic proofs. Second, Grimm et al. [2018] present an alternative
approach to reason about relational properties in F* that, similar to our work, uses extrinsic proofs
to reason about programs. Their approach supports probabilistic reasoning and is used to prove
probabilistic non-interference of Shannon’s classic cryptographic one-time pad. However, their
support for probabilistic reasoning is limited and quantitative specifications are not supported.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 112. Publication date: August 2022.



Safe Couplings: Coupled Refinement Types 112:27

Proof Systems of Higher Order Probabilistic Programs. Aguirre et al. [2021a] present several
proof systems for higher-order stateful probabilistic programs. One key novelty of their proof
systems is the support of interactive adversarial computations. Such rules can be used to prove
that programs verify relational properties for all possible (well-typed) adversarial computations.
Unfortunately, these rules are only proved sound for boolean relational properties and it is an open
problem whether these rules remain sound for quantitative properties modeled using Kantorovich
lifting. Their approach builds on Relational Higher-Order Logic (RHOL) [Aguirre et al. 2017],
which achieves full expressiveness and bypasses limitations of syntax-directed reasoning via an
embedding into HOL. However, there is no implementation of RHOL and of its extensions.

Differential privacy. Differential privacy is a mathematical notion of privacy that can be un-
derstood as a form of probabilistic sensitivity w.r.t. some pseudo-distance induced by a specific
f-divergence. As such, differential privacy is directly related to our work.

Fuzz [Reed and Pierce 2010] was the first type-based approach to verify distance of higher order
programs, in the domain of differential privacy. Since introduced, Fuzz has been extended in various
ways. DFuzz [Gaboardi et al. 2013] introduces recursion; Adaptive Fuzz [Winograd-Cort et al. 2017]
supports dynamic data analysis; Fuzzi [Zhang et al. 2019] extend Fuzz with APRHL [Barthe et al.
2012] to prove trusted primitives (like Laplace); Duet [Near et al. 2019] extends Fuzz with support
for advanced variants of differential privacy via a dual type system; HOARe2 [Barthe et al. 2015]
provides a relational refinement system that embeds Fuzz; and Bunched Fuzz [june wunder and
Arthur Azevedo de Amorim and Patrick Baillot and Marco Gaboardi 2022] extends the system
with bunches to, like us, reason about distances of probability distributions. Like our system, most
of these approaches use typing rules to trace distance and have some support of probabilistic
programs. However, they lack the flexibility to reason about expected sensitivity for most advanced
examples such as those considered here.

In a work most closely related to ours, DPella [Lobo-Vesga et al. 2021] and Solo [Abuah et al.
2021] use Haskell’s dependent types to encode differential privacy. Both these systems are similar to
ours since they do verify executable Haskell code. The critical difference is that they use Haskell’s
dependent types while we use the refinement type extension of Liquid Haskell. One benefit of our
approach is that we can delegate arithmetic reasoning to SMT. At a more general level, the two
approaches are incomparable: we are able to reason finely about expected sensitivity, whereas they
can reason about differential privacy using standard composition theorems, and about accuracy
using a fine-grained approach that exploits a slick combination of information flow typing and
concentration inequalities.

7 CONCLUSION

We presented safe-coupling, a library that allows reasoning about relational properties of proba-
bilistic, executable, Haskell programs. safe-coupling is developed on top of Liquid Haskell and as
such enjoys the predictable verification of a mature, unary refinement type checker. To justify the
assumptions of our library we formalized the core calculus AR? that captures these assumptions
and proved it sound. Finally, we used safe-coupling to formally prove convergence of TD(0) and
algorithmic stability of SGD, both classic machine learning algorithms from the literature.

ACKNOWLEDGMENTS

We thank Alejandro Aguirre and Jiajia Song for the useful discussions. This work is founded by
the Horizon Europe ERC Starting Grant CRETE (GA: 101039196), the US Office of Naval Research
HACKCRYPT (Ref. N00014-19-1-2292), the Atraccion de Talento grant (Ref. 2019-T2/TIC-13455),
and the Juan de la Cierva grant (IJC2019-041599-I).

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 112. Publication date: August 2022.



112:28 Elizaveta Vasilenko, Niki Vazou, and Gilles Barthe

REFERENCES

Chike Abuah, David Darais, and Joseph P. Near. 2021. Solo: Enforcing Differential Privacy Without Fancy Types. In CoRR.
https://arxiv.org/abs/2105.01632

Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, Shin-ya Katsumata, and Tetsuya Sato. 2021a. Higher-Order
Probabilistic Adversarial Computations: Categorical Semantics and Program Logics. In ICFP. https://doi.org/10.1145/
3473598

Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub. 2017. A Relational Logic for
Higher-Order Programs. In ICFP. https://doi.org/10.1145/3110265

Alejandro Aguirre, Gilles Barthe, Justin Hsu, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2021b.
A Pre-Expectation Calculus for Probabilistic Sensitivity. In POPL. https://doi.org/10.1145/3434333

Martin Avanzini, Gilles Barthe, and Ugo Dal Lago. 2021. On Continuation-Passing Transformations and Expected Cost
Analysis. In ICFP. https://doi.org/10.1145/3473592

Martin Avanzini, Georg Moser, and Michael Schaper. 2020. A Modular Cost Analysis for Probabilistic Programs. In OOPSLA.
https://doi.org/10.1145/3428240

Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2018. Proving Expected Sensitivity of
Probabilistic Programs. In POPL. https://doi.org/10.1145/3158145

Gilles Barthe, Cédric Fournet, Benjamin Grégoire, Pierre-Yves Strub, Nikhil Swamy, and Santiago Zanella Béguelin. 2014.
Probabilistic Relational Verification for Cryptographic Implementations. In POPL. https://doi.org/10.1145/2535838.
2535847

Gilles Barthe, Marco Gaboardi, Emilio Jesus Gallego Arias, Justin Hsu, Aaron Roth, and Pierre-Yves Strub. 2015. Higher-
Order Approximate Relational Refinement Types for Mechanism Design and Differential Privacy. In POPL. https:
//doi.org/10.1145/2676726.2677000

Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009. Formal Certification of Code-Based Cryptographic
Proofs. In POPL. https://doi.org/10.1145/1480881.1480894

Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin. 2011. Computer-Aided Security Proofs
for the Working Cryptographer. In CRYPTO. https://doi.org/10.1007/978-3-642-22792-9_5

Gilles Barthe and Justin Hsu. 2020. Probabilistic Couplings from Program Logics. Cambridge University Press. https:
//doi.org/10.1017/9781108770750.006

Gilles Barthe, Boris Képf, Federico Olmedo, and Santiago Zanella Béguelin. 2012. Probabilistic Relational Reasoning for
Differential Privacy. In POPL. https://doi.org/10.1145/2103656.2103670

David A. Basin, Andreas Lochbihler, and S. Reza Sefidgar. 2017. CryptHOL: Game-based Proofs in Higher-order Logic. In
Journal of Cryptology. https://doi.org/10.1007/s00145-019-09341-z

Olivier Bousquet and André Elisseeff. 2002. Stability and Generalization. In Journal of Machine Learning Research . https:
//doi.org/10.1162/153244302760200704

Ezgi Cicek, Weihao Qu, Gilles Barthe, Marco Gaboardi, and Deepak Garg. 2019. Bidirectional Type Checking for Relational
Properties. In PLDI. https://doi.org/10.1145/3314221.3314603

Yuxin Deng. 2015. Semantics of Probabilistic Processes: An Operational Approach. Springer. https://doi.org/10.1007/978-3-
662-45198-4

Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C. Pierce. 2013. Linear Dependent Types for
Differential Privacy. In POPL. https://doi.org/10.1145/2429069.2429113

Niklas Grimm, Kenji Maillard, Cédric Fournet, Catalin Hritcu, Matteo Maffei, Jonathan Protzenko, Tahina Ramananandro,
Aseem Rastogi, Nikhil Swamy, and Santiago Zanella Béguelin. 2018. A Monadic Framework for Relational Verification:
Applied to Information Security, Program Equivalence, and Optimizations. In CPP. https://doi.org/10.1145/3167090

Jad Hamza, Nicolas Voirol, and Viktor Kuncak. 2019. System FR: Formalized Foundations for the Stainless Verifier. In
OOPSLA. https://doi.org/10.1145/3360592

Martin A. T. Handley, Niki Vazou, and Graham Hutton. 2019. Liquidate Your Assets: Reasoning about Resource Usage in
Liquid Haskell. In POPL. https://doi.org/10.1145/3371092

Moritz Hardt, Ben Recht, and Yoram Singer. 2016. Train Faster, Generalize Better: Stability of Stochastic Gradient Descent.
In ICML. https://dl.acm.org/doi/10.5555/3045390.3045520

Johannes Holzl. 2016. Formalising Semantics for Expected Running Time of Probabilistic Programs. In ITP. https:
//doi.org/10.1007/978-3-319-43144-4_30

Zixin Huang, Zhenbang Wang, and Sasa Misailovic. 2018. PSense: Automatic Sensitivity Analysis for Probabilistic Programs.
In ATVA. https://doi.org/10.1007/978-3-030-01090-4_23

Joe Hurd. 2003. Verification of the Miller-Rabin probabilistic primality test. In The Journal of Logic and Algebraic Programming.
https://doi.org/10.1016/S1567-8326(02)00065-6

june wunder and Arthur Azevedo de Amorim and Patrick Baillot and Marco Gaboardi. 2022. Bunched Fuzz: Sensitivity for
Vector Metrics. In CoRR. https://doi.org/10.48550/arXiv.2202.01901

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 112. Publication date: August 2022.


https://arxiv.org/abs/2105.01632
https://doi.org/10.1145/3473598
https://doi.org/10.1145/3473598
https://doi.org/10.1145/3110265
https://doi.org/10.1145/3434333
https://doi.org/10.1145/3473592
https://doi.org/10.1145/3428240
https://doi.org/10.1145/3158145
https://doi.org/10.1145/2535838.2535847
https://doi.org/10.1145/2535838.2535847
https://doi.org/10.1145/2676726.2677000
https://doi.org/10.1145/2676726.2677000
https://doi.org/10.1145/1480881.1480894
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1017/9781108770750.006
https://doi.org/10.1017/9781108770750.006
https://doi.org/10.1145/2103656.2103670
https://doi.org/10.1007/s00145-019-09341-z
https://doi.org/10.1162/153244302760200704
https://doi.org/10.1162/153244302760200704
https://doi.org/10.1145/3314221.3314603
https://doi.org/10.1007/978-3-662-45198-4
https://doi.org/10.1007/978-3-662-45198-4
https://doi.org/10.1145/2429069.2429113
https://doi.org/10.1145/3167090
https://doi.org/10.1145/3360592
https://doi.org/10.1145/3371092
https://dl.acm.org/doi/10.5555/3045390.3045520
https://doi.org/10.1007/978-3-319-43144-4_30
https://doi.org/10.1007/978-3-319-43144-4_30
https://doi.org/10.1007/978-3-030-01090-4_23
https://doi.org/10.1016/S1567-8326(02)00065-6
https://doi.org/10.48550/arXiv.2202.01901

Safe Couplings: Coupled Refinement Types 112:29

Dexter Kozen. 1985. A Probabilistic PDL. In Journal of Computer and System Sciences. https://doi.org/10.1016/0022-
0000(85)90012- 1

Nico Lehmann, Rose Kunkel, Jordan Brown, Jean Yang, Niki Vazou, Nadia Polikarpova, Deian Stefan, and Ranjit Jhala.
2021. STORM: Refinement Types for Secure Web Applications. In OSDL https://www.usenix.org/conference/osdi21/
presentation/lehmann

Torgny Lindvall. 2002. Lectures on the Coupling Method. https://doi.org/10.1137/1035121

Elisabet Lobo-Vesga, Alejandro Russo, and Marco Gaboardi. 2021. A Programming Language for Data Privacy with Accuracy
Estimations. In Transactions on Programming Languages and Systems. https://doi.org/10.1145/3452096

Kenji Maillard, Catalin Hritcu, Exequiel Rivas, and Antoine Van Muylder. 2020. The Next 700 Relational Program Logics. In
POPL. https://doi.org/10.1145/3371072

Carroll Morgan, Annabelle Mclver, and Karen Seidel. 1996. Probabilistic Predicate Transformers. In TOPLAS. https:
//doi.org/10.1145/229542.229547

Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. 2011. Verification of Information Flow and Access Control
Policies with Dependent Types. In S&P. https://doi.org/10.1109/SP.2011.12

Joseph P. Near, David Darais, Chike Abuah, Tim Stevens, Pranav Gaddamadugu, Lun Wang, Neel Somani, Mu Zhang, Nikhil
Sharma, Alex Shan, and Dawn Song. 2019. Duet: An Expressive Higher-Order Language and Linear Type System for
Statically Enforcing Differential Privacy. (2019). https://doi.org/10.1145/3360598

Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann. 2018. Bounded Expectations: Resource Analysis for Probabilistic
Programs. In PLDI. https://doi.org/10.1145/3192366.3192394

Adam Petcher and Greg Morrisett. 2015. The Foundational Cryptography Framework. In POST. https://doi.org/10.1007/978-
3-662-46666-7_4

Norman Ramsey and Avi Pfeffer. 2002. Stochastic Lambda Calculus and Monads of Probability Distributions. In POPL.
https://doi.org/10.1145/503272.503288

Jason Reed and Benjamin C. Pierce. 2010. Distance Makes the Types Grow Stronger: A Calculus for Differential Privacy. In
ICFP. https://doi.org/10.1145/1863543.1863568

Adam Scibior, Zoubin Ghahramani, and Andrew D. Gordon. 2015. Practical Probabilistic Programming with Monads. In
Haskell. https://doi.org/10.1145/2887747.2804317

Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bharga-
van, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoué, and Santiago Zanella-Béguelin.
2016. Dependent Types and Multi-Monadic Effects in F*. In POPL. https://doi.org/10.1145/2914770.2837655

Joseph Tassarotti and Robert Harper. 2018. Verified Tail Bounds for Randomized Programs. In ITP. https://doi.org/10.1007/978-
3-319-94821-8_33

Hermann Thorisson. 2000. Coupling, Stationarity, and Regeneration. Springer. https://notendur.hi.is/hermann/iid/csr/

Niki Vazou, Joachim Breitner, Rose Kunkel, David Van Horn, and Graham Hutton. 2018. Theorem Proving for All: Equational
Reasoning in Liquid Haskell (Functional Pearl). In Haskell. https://doi.org/10.1145/3242744.3242756

Niki Vazou, Eric L. Seidel, and Ranjit Jhala. 2014a. LiquidHaskell: Experience with Refinement Types in the Real World. In
Haskell. https://doi.org/10.1145/2775050.2633366

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones. 2014b. Refinement Types for Haskell.
In ICFP. https://doi.org/10.1145/2692915.2628161

Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton, Philip Wadler, and Ranjit Jhala. 2017.
Refinement Reflection: Complete Verification with SMT. In POPL. https://doi.org/10.1145/3158141

Cédric Villani. 2009. Optimal Transport, old and new. Springer. https://link.springer.com/book/10.1007/978-3-540-71050-9

Peixin Wang, Hongfei Fu, Krishnendu Chatterjee, Yuxin Deng, and Ming Xu. 2020. Proving Expected Sensitivity of
Probabilistic Programs with Randomized Variable-Dependent Termination Time. In POPL. https://doi.org/10.1145/3371093

Daniel Winograd-Cort, Andreas Haeberlen, Aaron Roth, and Benjamin C. Pierce. 2017. A Framework for Adaptive Differential
Privacy. In ICFP. https://doi.org/10.1145/3110254

Hengchu Zhang, Edo Roth, Andreas Haeberlen, Benjamin C. Pierce, and Aaron Roth. 2019. Fuzzi: A Three-Level Logic for
Differential Privacy. In ICFP. https://doi.org/10.1145/3341697

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 112. Publication date: August 2022.


https://doi.org/10.1016/0022-0000(85)90012-1
https://doi.org/10.1016/0022-0000(85)90012-1
https://www.usenix.org/conference/osdi21/presentation/lehmann
https://www.usenix.org/conference/osdi21/presentation/lehmann
https://doi.org/10.1137/1035121
https://doi.org/10.1145/3452096
https://doi.org/10.1145/3371072
https://doi.org/10.1145/229542.229547
https://doi.org/10.1145/229542.229547
https://doi.org/10.1109/SP.2011.12
https://doi.org/10.1145/3360598
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1007/978-3-662-46666-7_4
https://doi.org/10.1007/978-3-662-46666-7_4
https://doi.org/10.1145/503272.503288
https://doi.org/10.1145/1863543.1863568
https://doi.org/10.1145/2887747.2804317
https://doi.org/10.1145/2914770.2837655
https://doi.org/10.1007/978-3-319-94821-8_33
https://doi.org/10.1007/978-3-319-94821-8_33
https://notendur.hi.is/hermann/iid/csr/
https://doi.org/10.1145/3242744.3242756
https://doi.org/10.1145/2775050.2633366
https://doi.org/10.1145/2692915.2628161
https://doi.org/10.1145/3158141
https://link.springer.com/book/10.1007/978-3-540-71050-9
https://doi.org/10.1145/3371093
https://doi.org/10.1145/3110254
https://doi.org/10.1145/3341697

	Abstract
	1 Introduction
	2 Overview
	2.1 The Probability Distribution
	2.2 Relational Specifications & Lifting
	2.3 Relational Proofs
	2.4 Quantitative Specifications and Kantorovich lifting
	2.5 Distance Proofs

	3 Implementation of safe-coupling
	3.1 Liquid Haskell Preliminaries
	3.2 Data.Dist: Definition of Distance
	3.3 Monad.PrM: Definition of the Probabilistic Monad
	3.4 redTCB.Axioms: Assumption of Relational Axioms
	3.5 redTCB.Dist: Assumption of Distance Specifications
	3.6 Theorems: Proof of Relational Properties

	4 Case Studies
	4.1 Case Study I: Convergence of TD(0)
	4.2 Case Study II: Stability of SGD
	4.3 Quantitative Summary

	5 Proof system
	5.1 Syntax
	5.2 Type system
	5.3 Axioms
	5.4 Proof System
	5.5 Denotational Semantics
	5.6 Soundness
	5.7 Derived rules

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

